An in-depth examination of the effects of climate change on rice yield in China, encompassing various rice types, is crucial for ensuring the nation’s food security. This study develops an “economy-climate” theoretical model and employs Panel Corrected Standard Error Estimation (PCSE) on panel data spanning from 1978 to 2018, sourced from China’s primary grain-producing regions. The analysis delves into the impact of climate variables, including precipitation, temperature, and sunshine duration, on overall rice production and different rice types. Overall, the findings reveal a nonlinear relationship between precipitation, temperature, sunshine duration, and rice yield, characterized by an “inverted U-shaped” pattern. However, significant variations exist in the effects on different rice types across China’s main grain-producing areas. Increasing precipitation generally enhances early rice production across provinces and also augments mid-season and one-season-late rice production in the Inner Mongolia Autonomous Region, Hebei, Jilin, Heilongjiang, and Shandong Province. Conversely, it reduces mid-season and one-season-late rice output in Liaoning, Jiangsu, Anhui, Jiangxi, Henan, Hubei, and Hunan. Sichuan Province sees a rise in temperature favoring early and double-season-late rice production, unlike other provinces. For mid-season and one-season-late rice, temperature increases benefit output in Heilongjiang Province but not in other regions. Additionally, prolonged sunshine duration boosts early and double-season-late rice production across all provinces but does not have the same effect on mid-season and one-season-late rice in China’s primary grain-producing areas.
Read full abstract