This study explores the application of Artificial Intelligence (AI), specifically Convolutional Neural Networks (CNNs), for detecting rice plant diseases using ARM Cortex-M microprocessors. Given the significant role of rice as a staple food, particularly in Malaysia where the rice self-sufficiency ratio dropped from 65.2% in 2021 to 62.6% in 2022, there is a pressing need for advanced disease detection methods to enhance agricultural productivity and sustainability. The research utilizes two extensive datasets for model training and validation: the first dataset includes 5932 images across four rice disease classes, and the second comprises 10,407 images across ten classes. These datasets facilitate comprehensive disease detection analysis, leveraging MobileNetV2 and FD-MobileNet models optimized for the ARM Cortex-M4 microprocessor. The performance of these models is rigorously evaluated in terms of accuracy and computational efficiency. MobileNetV2, for instance, demonstrates a high accuracy rate of 97.5%, significantly outperforming FD-MobileNet, especially in detecting complex disease patterns such as tungro with a 93% accuracy rate. Despite FD-MobileNet’s lower resource consumption, its accuracy is limited to 90% across varied testing conditions. Resource optimization strategies highlight that even slight adjustments, such as a 0.5% reduction in RAM usage and a 1.14% decrease in flash memory, can result in a notable 9% increase in validation accuracy. This underscores the critical balance between computational resource management and model performance, particularly in resource-constrained settings like those provided by microcontrollers. In summary, the deployment of CNNs on microcontrollers presents a viable solution for real-time, on-site plant disease detection, demonstrating potential improvements in detection accuracy and operational efficiency. This study advances the field of smart agriculture by integrating cutting-edge AI with practical agricultural needs, aiming to address the challenges of food security in vulnerable regions.
Read full abstract