The marine-derived fungal strains KMM 4718 and KMM 4747 isolated from sea urchin Scaphechinus mirabilis as a natural fungal complex were identified as Penicillium sajarovii and Aspergillus protuberus based on Internal Transcribed Spacer (ITS), partial β-tubulin (BenA), and calmodulin (CaM) molecular markers as well as an ribosomal polymerase two, subunit two (RPB2) region for KMM 4747. From the ethyl acetate extract of the co-culture, two new polyketides, sajaroketides A (1) and B (2), together with (2′S)-7-hydroxy-2-(2′-hydroxypropyl)-5-methylchromone (3), altechromone A (4), norlichexanthone (5), griseoxanthone C (6), 1,3,5,6-tetrahydroxy-8-methylxanthone (7), griseofulvin (8), 6-O-desmethylgriseofulvin (9), dechlorogriseofulvin (10), and 5,6-dihydro-4-methyl-2H-pyran-2-one (11) were identified. The structures of the compounds were elucidated using spectroscopic analyses. The absolute configurations of the chiral centers of sajaroketides A and B were determined using time-dependent density functional theory (TDDFT)-based calculations of the Electronic Circular Dichroism (ECD) spectra. The inhibitory effects of these compounds on urease activity and the growth of Staphylococcus aureus, Escherichia coli, and Candida albicans were observed. Sajaroketide A, altechromone A, and griseofulvin showed significant cardioprotective effects in an in vitro model of S. aureus-induced infectious myocarditis.
Read full abstract