The gene networks surrounding Nod factor receptors that govern the symbiotic process between legumes and rhizobia remain largely unexplored. Here, we identify 13 novel GmNFR1α-associated proteins by yeast two-hybrid screening, and describe a potential interacting protein, GmBI-1α. GmBI-1α had the highest positive correlation with GmNFR1α in a co-expression network analysis, and its expression at the mRNA level in roots was enhanced by rhizobial infection. Moreover, GmBI-1α-GmNFR1α interaction was shown to occur in vitro and in vivo. The GmBI-1α protein was localized to multiple subcellular locations, including the endoplasmic reticulum and plasma membrane. Overexpression of GmBI-1α increased the nodule number in transgenic hairy roots or transgenic soybean, whereas down-regulation of GmBI-1α transcripts by RNA interference reduced the nodule number. In addition, the nodules in GmBI-1α-overexpressing plants became smaller in size and infected area with reduced nitrogenase activity. In GmBI-1α-overexpressing transgenic soybean, the elevated GmBI-1α also promoted plant growth and suppressed the expression of defense signaling-related genes. Infection thread analysis of GmBI-1α-overexpressing plants showed that GmBI-1α promoted rhizobial infection. Collectively, our findings support a GmNFR1α-associated protein in the Nod factor signaling pathway and shed new light on the regulatory mechanism of GmNFR1α in rhizobial symbiosis.