ABSTRACT To investigate the role of m6A-mediated lncRNA MAPKAPK5-AS1 (MK5-AS1) in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) and its underlying molecular mechanism. RT-qPCR, western blot, flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA) were utilized for evaluating inflammation and apoptosis. Next, RIP, RNA pull-down, dual-luciferase reporter gene assay, and a series of rescue experiments were performed to explore the regulatory mechanisms of MK5-AS1 and its sponge-like action in RA-FLSs. The regulatory relationships between MK5-AS1 and WTAP were explored using the MeRIP-qPCR assay and RT-qPCR. Finally, the critical RNAs in the ceRNA axis were verified in the clinical cohort. MK5-AS1 was poorly expressed and miR-146a-3p was overexpressed in co-cultured RA-FLSs. MK5-AS1 overexpression could inhibit inflammatory responses and promote cell apoptosis in the co-cultured RA-FLSs. MK5-AS1 bound to miR-146a-3p to target SIRT1, thereby affecting inflammatory responses and cell apoptosis in the co-cultured RA-FLSs. SIRT1 knockdown or miR-146a-3p overexpression reversed the impacts of MK5-AS1 overexpression on co-cultured RA-FLSs inflammation and apoptosis. Moreover, WTAP was downregulated, and induced the inhibition of MK5-AS1 by promoting its RNA transcript stability. Clinically, MK5-AS1 was downregulated in RA-PBMCS and correlated with the clinical characteristics of RA. Our study elucidated that m6A-mediated MK5-AS1 sequestered miR-146a-3p to suppress SIRT1 expression in co-cultured RA-FLSs, thus providing a new insight into the treatment of rheumatoid arthritis.