A physical difference between two alternating stimuli can elicit perceptual segregation when the difference is sufficiently salient. One such cue involves differences in reverberation, potentially caused by differences in source distance. Here, we studied what aspects of difference in reverberation are most important in eliciting segregation using a rhythmic masking task. Two interleaved sequences of Gaussian noise bursts (target and interferer) were presented on each trial and listeners attempted to identify which of two rhythms was presented in the target sequence. The influence of the reverberation tail (or damped decay) was studied by parametrically changing its duration in the target sequence, while eliminating all binaural cues. The influence of spectral content of the tail was examined by simulating the spectral coloration produced by real rooms. Results suggest that damped tails can elicit perceptual segregation with tail durations less than 100 ms. In addition, the spectral content of the tail can further influence segregation performance. Overall, differences in reverberation can serve as a prominent cue to aid perceptual segregation, particularly if a room environment introduces differences in spectrum based on distance, which is often the case in real rooms. [Work supported by NIH grant R01DC07657.]
Read full abstract