Single server retrial queueing models in which customers arrive according to a batch Poisson process are considered here. An arriving batch, finding the server busy, enters an orbit. Otherwise, one customer from the arriving batch enters for service immediately while the rest join the orbit. The customers from the orbit (the orbital customers) try to reach the server subsequently with the inter-retrial times exponentially distributed. Additionally, at each service completion epoch, two different search mechanisms, that is, type I and type II search, to bring the orbital customers by the system to service, are switched on. Thus, when the server is idle, a competition takes place among primary customers, customers who come by retrial and by two types of searches. The type I search selects a single customer whereas the type II search considers a batch of customers from the orbit. Depending on the maximum size of the batch being considered for service by a type II search, two cases are addressed here. In the first case, no restriction on batch size is assumed, whereas in the second case, maximum size of the batch is restricted to a pre-assigned value. We call the resulting models as model 1 and model 2 respectively. In all service modes other than type II search, only a single customer is qualified for service. Service times of the four types of customers, namely, primary, repeated, and those who come by two types of searches are arbitrarily distributed (with different distributions which are independent of each other). Steady state analysis is performed and stability conditions are established. A control problem for model 2 is considered and numerical illustrations are provided.