Background:Growth factors and chemical stimulants have key role in cartilage tissue engineering, but these agents have unfavorable effects on cells. Avocado soybean unsaponifiables (ASU) has chondroprotective and anti-inflammatory effects. In this study, fibrin2nanoparticles (FNP)/ASU, as a new delivery system, with stem cells applied for cartilage tissue engineering in poly (lactic-co-glycolic) acid (PLGA) scaffold.Materials and Methods:FNP/ASU prepared by freeze milling and freeze drying. NFP/ASU was characterized by dynamic light scattering (DLS). PLGA-NFP/ASU scaffold was fabricated and assessed by scanning electron microscope (SEM). Human adipose-derived stem cells (hADSCs) were seeded on scaffold and induced for chondrogenesis. After 14 days, cell viability and gene/protein expression evaluated.Results:The results of DLS and SEM indicated that nanoparticles had high quality. The expression of type II collagen and SOX9 and aggrecan (ACAN) genes in differentiated cells in the presence of ASU was significantly increased compared with the control group (P and lt; 0.01), on the other hand, type I collagen expression was significantly decreased and western blot confirmed it.Conclusions:This study indicated FNP/ASU loaded in PLGA scaffold has excellent effect on chondrogenic differentiation of hADSCs and tissue engineering.
Read full abstract