Methods based on light field information have shown promising results in depth estimation and underwater image restoration. However, improvements are still needed in terms of depth estimation accuracy and image restoration quality. Previous work on underwater image restoration employed an image formation model (IFM) that overlooked the effects of light attenuation and scattering coefficients in underwater environments, leading to unavoidable color deviation and distortion in the restored images. Additionally, the high blurriness and associated distortions in underwater images make depth information extraction and estimation very challenging. In this paper, we refine the light propagation model and propose a method to estimate the attenuation and backscattering coefficients of the underwater IFM. We simplify these coefficients into distance-related functions and design a relationship between distance and the darkest channel to estimate the water coefficients, effectively suppressing color deviation and distortion in the restoration results. Furthermore, to increase the accuracy of depth estimation, we propose using blur cues to construct a cost for refocusing in the depth direction, reducing the impact of high signal-to-noise ratio environments on depth information extraction, and effectively enhancing the accuracy and robustness of depth estimation. Finally, experimental comparisons show that our method achieves more accurate depth estimation and image restoration closer to real scenes compared to state-of-the-art methods.