Abstract

In this paper, a new direct computational approach to dense 3D reconstruction in autonomous driving is proposed to simultaneously estimate the depth and the camera motion for the motion stereo problem. A traditional Structure from Motion framework is utilized to establish geometric constrains for our variational model. The architecture is mainly composed of the texture constancy constraint, one-order motion smoothness constraint, a second-order depth regularize constraint and a soft constraint. The texture constancy constraint can improve the robustness against illumination changes. One-order motion smoothness constraint can reduce the noise in estimation of dense correspondence. The depth regularize constraint is used to handle inherent ambiguities and guarantee a smooth or piecewise smooth surface, and the soft constraint can provide a dense correspondence as initial estimation of the camera matrix to improve the robustness future. Compared to the traditional dense Structure from Motion approaches and popular stereo approaches, our monocular depth estimation results are more accurate and more robust. Even in contrast to the popular depth from single image networks, our variational approach still has good performance in estimation of monocular depth and camera motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.