Wildlife populations are not static. Intrinsic and extrinsic factors affect individuals, which lead to spatiotemporal variation in population density and range. Yet, dynamics in density and their drivers are rarely documented, due in part to the inherent difficulty of studying long-term population-level phenomena at ecologically meaningful scales. We studied the spatiotemporal density dynamics in a recolonizing large carnivore population, the wolverine Gulo gulo, across the Scandinavian Peninsula over nine years. We fitted open-population spatial capture-recapture models to noninvasive genetic sampling data collected across Norway and Sweden to estimate annual density surfaces and their drivers. This approach allowed us to model sex-specific changes in wolverine density and the effect of landscape-level environmental determinants over time. Our results revealed that, as wolverines successfully recolonized many parts of their historical range in Scandinavia, the relationship with spatial determinants of density has changed over time. We also found support for sex-specific responses of the Scandinavian wolverine to the environmental determinants of density and differences in the temporal dynamics of their relationships, indicating disproportionate recolonization ability and anthropogenic pressures. We observed significant changes in the relationship of female wolverine density with several determinants during the study period, suggesting still ongoing expansion of female wolverines whereas males might have already reached the range limits. These findings show that the Scandinavian wolverine population is still recovering from centuries of persecution and severe range contraction. Our study sheds light on the dynamics and challenges of recolonizing large carnivores in human-dominated landscapes across time and space.
Read full abstract