1. In the spinalized cat, nociceptive spinal neurons with knee input show enhanced responses to mechanical stimulation of that joint once an inflammation has developed in the knee. Enhanced responses may result from increased afferent inflow as well as from modifications of the nociceptive processing within the spinal cord. To examine the significance of these components, we tested in 30 chloralose-anesthetized, spinalized cats whether, during development of arthritis, changes of responsiveness in spinal neurons are restricted to stimulation of the inflamed joint or whether responsiveness in these neurons is altered in general. While continuously recording from a neuron, we injected kaolin and carrageenan into one knee and tested the responses to mechanical stimuli applied to the joint and to regions adjacent to and remote from the knee during the developing arthritis. In addition, in six cats we monitored the neurons' responses to electrical stimulation of the sural nerves and the rostral lumbar spinal cord. 2. Of 32 neurons in laminae VI, VII, and VIII of the lumbar spinal cord, 15 ascending and eight nonascending cells were driven by mechanical stimulation of one or both knee joint(s). Nine of these were nociceptive specific (NS), responding exclusively or predominantly to noxious compression of the knee and other deep tissue, and 12 were wide-dynamic-range (WDR) cells with graded responses to gentle and noxious stimuli applied to the knee joint(s), deep tissue, and skin. Two neurons with high ongoing discharges had some excitatory joint input but showed marked inhibition by most stimuli used (INH neurons). The majority of the neurons had receptive fields on both legs. Nine of the 32 neurons had no input from the knee(s). 3. All 23 neurons with joint input became sensitive or more responsive to movements and gentle compression of the inflamed knee once the inflammation had developed. In general, these neurons also showed enhanced responses to compression of the adjacent muscles in thigh and lower leg. In 20 neurons, response properties were even altered for stimuli applied to regions remote from the inflamed joint, including the contralateral leg in 18 cases. We found expansion of initially restricted receptive fields (mainly in NS cells), enhancement of preexisting responses, and/or lowering of threshold to mechanical stimuli applied to these regions; few neurons developed inhibitory reactions.(ABSTRACT TRUNCATED AT 400 WORDS)
Read full abstract