Direct pulp capping is crucial for maintaining dental pulp vitality. The materials employed for this purpose should possess properties such as easy-handling, excellent biocompatibility, infection resistance, and the ability to stimulate the formation of reparative dentin. Mineral trioxide aggregate (MTA) is commonly used for pulp capping. However, certain limitations, including its long setting time, insufficient anti-washout ability, high initial curing pH, and handling difficulties, restrict MTA from meeting a broader range of clinical demands. Bioactive glass (BG) is known for its osteo-inductive and bone restoration properties. This study aims to develop a novel bioactive glass-based cement (BG-x/SA) for pulp capping applications, using BG microspheres (BG-x) as the solid phase and sodium alginate solution (SA) as the liquid phase. The solid phase has core-shell microspheres made by in-situ transformation, with BG in the core and hydroxyapatite (HA) in the shell. The study focuses on how the in-situ synthesis reaction parameters affect the cement's properties. Ultimately, BG-6/SA cement was identified as the optimal formulation, and a comparison with MTA shows BG-6/SA cement has a short setting time, good anti-washout performance, can adjust pH to mildly alkaline, promotes dentin formation, and has antibacterial effects. Thus, BG-6/SA cement has significant research value and good prospects as a new pulp-capping material.
Read full abstract