Bisphenol A (BPA) is a widely used industrial chemical found in various products, leading to human exposure through dietary and non-dietary sources. It acts as an endocrine disruptor, affecting reproductive processes in vertebrates by binding to estrogen receptors. While its effects on vertebrates have been extensively studied, much less is known about its impact on invertebrates. This study investigates the effects of BPA on the development and immune response of Aedes aegypti mosquitoes, which are important vectors for arboviral diseases, such as dengue, an emergent viral disease worldwide. Artificial aquatic niches (AAN) were sampled, and BPA concentrations were quantified. Ae. aegypti larvae were exposed to varying BPA concentrations, and their development, fecundity, fertility, and immune response were assessed. Results show delayed development and decreased emergence of mosquitoes exposed to BPA. Females exposed to BPA exhibited reduced oviposition while hatching rates remained unaffected. Furthermore, BPA exposure altered the expression of immune response genes in adult mosquitoes, with differential effects observed between sexes. This suggests that BPA exposure during early developmental stages can modulate the antiviral immune response in adult mosquitoes, possibly through the 20-hydroxyecdysone (20E) signaling pathway. Overall, this study highlights the potential impact of BPA on the development and immune function of mosquito vectors, with implications for vector competence and disease transmission.