Abstract
IntroductionAlternative splicing (AS) is a highly conserved mechanism that allows for the expansion of the coding capacity of the genome, through modifications of the way that multiple isoforms are expressed or used to generate different phenotypes. Despite its importance in physiology and disease, genome-wide studies of AS are lacking in most insects, including mosquitoes. Even for model organisms, chromatin associated processes involved in the regulation AS are poorly known.MethodsIn this study, we investigated AS in the mosquito Anopheles gambiae in the context of tissue-specific gene expression and mosquito responses to a Plasmodium falciparum infection, as well as the relationship between patterns of differential isoform expression and usage with chromatin accessibility changes. For this, we combined RNA-seq and ATAC-seq data from A. gambiae midguts and salivary glands, infected and non-infected.ResultsWe report differences between tissues in the expression of 392 isoforms and in the use of 247 isoforms. Secondly, we find a clear and significant association between chromatin accessibility states and tissue-specific patterns of AS. The analysis of differential accessible regions located at splicing sites led to the identification of several motifs resembling the binding sites of Drosophila transcription factors. Finally, the genome-wide analysis of tissue-dependent enhancer activity revealed that approximately 20% of A. gambiae transcriptional enhancers annotate to a differentially expressed or used isoform, and that their activation status is linked to AS differences between tissues.ConclusionThis research elucidates the role of AS in mosquito vector gene expression and identifies regulatory regions potentially involved in AS regulation, which could be important in the development of novel strategies for vector control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.