AbstractIn this study, we used Epistemic Network Analysis (ENA) to represent data generated by Natural Language Processing (NLP) analytics during an activity based on the Knowledge Integration (KI) framework. The activity features a web-based adaptive dialog about energy transfer in photosynthesis and cellular respiration. Students write an initial explanation, respond to two adaptive prompts in the dialog, and write a revised explanation. The NLP models score the KI level of the initial and revised explanations. They also detect the ideas in the explanations and the dialog responses. The dialog uses the detected ideas to prompt students to elaborate and refine their explanations. Participants were 196 8th-grade students at a public school in the Western United States. We used ENA to represent the idea networks at each KI score level for the revised explanations. We also used ENA to analyze the idea trajectories for the initial explanation, the two dialog responses, and the final explanation. Higher KI levels were associated with more links and increased frequency of mechanistic ideas in ENA representations. Representation of the trajectories suggests that the NLP adaptive dialog helped students who started with descriptive and macroscopic ideas to add more microscopic ideas. The dialog also helped students who started with partially linked ideas to keep linking the microscopic ideas to mechanistic ideas. We discuss implications for STEM teachers and researchers who are interested in how students build on their ideas to integrate their ideas.