Tung oil is an important dry grease. In order to overcome the deficiencies of traditional processes in oil production, the preparation of tung oil was carried out by the butane-subcritical method. A response surface optimization experiment was carried out based on Design-Expert software, and the best process parameters were obtained. The extraction temperature was 42.98 °C, the extraction time was 43.77 min, the particle size of the raw material was 38.88 mesh, and the oil yield of tung oil under this condition reached 67.437%. The fatty acid composition of tung oil was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS): the content of α-oleostearic acid was 74.99%, linoleic acid content was 8.83%, oleic acid content was 7.42%, palmitic acid content was 2.02%, and stearic acid content was 4.35%. Through the analysis of the oil sample obtained, five indicators showed that the process of obtaining oil products met the requirements of the national standard. By simulating the subcritical n-butane/tung oil dissolution equilibrium model, the miscible dynamic equilibrium of tung oil in subcritical n-butane was studied at temperatures in the range of 35–50 °C and an equilibrium time of 40 min, and the kinetic equations of oil extraction at different temperatures were obtained, with a coefficient of determination (R2) greater than 0.99. The oil extraction rate was up to 67.12 ± 0.05% under optimal extraction conditions through the optimization of univariate and response surface experimental design. Using 1stOpt data processing software, the data of tung oil extraction rate at different times were fitted, and it was found that the Patricelli model accurately elucidated the kinetic process of tung oil extraction through subcritical n-butane, with R2 greater than 0.99.
Read full abstract