Abstract

The main challenge in bacterial cellulose nanofibers production is low yield and high cost. The aim of this work is to optimize bacterial nano-cellulose production in the bench-scale rotating biofilm contact (RBC) bioreactor using experimental design. At all of experiments the Acetobacter Xylinum BPR2001 and culture medium molasses – CSL were used. Three effective factors in the three levels including rotation (10, 13 and 16 rpm), aeration (0.2, 0.5 and 0.8 vvm) and disk distance (1, 1.5 and 2 cm) were optimized by response surface experimental design. The optimum conditions of biocellulose production were rotation rate 13 rpm, aeration 0.5 vvm and disk distance 1.5 cm. The maximum dry weight of bacterial cellulose production reached 11.65 g/l in the 7th day, Which is one of the highest amounts of bacterial cellulose ever reported. Reduced quadratic models were used to final dry weight and moisture content of bacterial cellulose responses. ANOVA results showed the p-values were less than 0.05 that are significant models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.