The use of sulfur (S) in polluted soils can reduce metal(loid) toxicity and enhance phytoremediation effectiveness. Here we studied the response of barley plants to As in soil amended with sulfate or elemental sulfur throughout the growing cycle. A greenhouse experiment was carried out using 4-L pots filled with clay-loam soil spiked with 60 mg kg−1 As (Na2HAsO4·7H2O). Two chemical forms of sulfur (elemental sulfur (S0) or sulfate (CaSO4·2H2O)) were applied at a dose of 1 and 3 Mg ha−1, respectively, and two previously seeded barley plants were transplanted in each pot, using eight pots per treatment. At the end of the growing cycle, the biomass, nutrients, and metal(loid) content, as well as several physiological and biochemical parameters of the plants were analyzed. Moreover, the effect of the treatments on soil characteristics was also evaluated, including soil pore water. The treatment with sulfur promoted the growth of barley plants through their vegetative cycle, enhancing photosynthesis, although biomass did not significantly increase. Both sources of S promoted the accumulation of As in the root, thereby limiting its translocation to the aerial part of the plant, sulfate being more effective (an increase of 300%) than elemental S (an increase of 82%). The addition of S decreased soil pH. Furthermore, both treatments, but particularly sulfate, increased soluble sulfate and stimulated soil biological properties. In conclusion, the application of sulfate to As-polluted soil can enhance As phytostabilization by barley plants while simultaneously improving the biological properties of the soil.
Read full abstract