Abstract
Soil water deficit (WD) significantly impacts plant survival and crop yields. Many gaps remain in our understanding of the synergistic coordination between molecular and ecophysiological responses delaying substantial drought-induced effects on plant growth. To investigate this synergism in tomato leaves, we combined molecular, ecophysiological, and anatomical methods to examine gene expression patterns and physio-anatomical characteristics during a progressing WD experiment. Four sampling points were selected for transcriptomic analysis based on the key ecophysiological responses of the tomato leaves: 4 and 5 days after WD (d-WD), corresponding to 10% and 90% decrease in leaf stomatal conductance; 8 d-WD, the leaf wilting point; and 10 d-WD, when air embolism blocks 12% of the leaf xylem water transport. At 4 d-WD, upregulated genes were mostly linked to ABA-independent responses, with larger-scale ABA-dependent responses occurring at 5 d-WD. At 8 d-WD, we observed an upregulation of heat shock transcription factors, and two days later (10 d-WD), we found a strong upregulation of oxidative stress transcription factors. Finally, we found that young leaves present a stronger dehydration tolerance than mature leaves at the same drought intensity level, presumably because young leaves upregulate genes related to increased callose deposition resulting in limiting water loss to the phloem, and related to increased cell rigidity by modifying cell wall structures. This combined dataset will serve as a framework for future studies that aim to obtain a more holistic WD plant response at the molecular, ecophysiological and anatomical level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.