It is vital to develop an appropriate prediction model and link carefully to measurable events such as clinical parameters and patient outcomes to analyze the severity of the disease. Timely identifying retinal diseases is becoming more vital to prevent blindness among young and adults. Investigation of blood vessels delivers preliminary information on the existence and treatment of glaucoma, retinopathy, and so on. During the analysis of diabetic retinopathy, one of the essential steps is to extract the retinal blood vessel accurately. This study presents an improved Gabor filter through various enhancement approaches. The degraded images with the enhancement of certain features can simplify image interpretation both for a human observer and for machine recognition. Thus, in this work, few enhancement approaches such as Gamma corrected adaptively with distributed weight (GCADW), joint equalization of histogram (JEH), homomorphic filter, unsharp masking filter, adaptive unsharp masking filter, and particle swarm optimization (PSO) based unsharp masking filter are taken into consideration. In this paper, an effort has been made to improve the performance of the Gabor filter by combining it with different enhancement methods and to enhance the detection of blood vessels. The performance of all the suggested approaches is assessed on publicly available databases such as DRIVE and CHASE_DB1. The results of all the integrated enhanced techniques are analyzed, discussed, and compared. The best result is delivered by PSO unsharp masking filter combined with the Gabor filter with an accuracy of 0.9593 for the DRIVE database and 0.9685 for the CHASE_DB1 database. The results illustrate the robustness of the recommended model in automatic blood vessel segmentation that makes it possible to be a clinical support decision tool in diabetic retinopathy diagnosis.
Read full abstract