An individual of modular organisms, such as plants and fungi, consists of more than one module that is sometimes physically and physiologically connected with each other. We examined effects of translocation costs, resource–fitness relationships and original resource conditions for modules on the optimal resource translocation strategy for reproductive success in modular organisms with simple models. We considered two types of translocation cost: amount-dependent and ratio-dependent costs. Three optimal resource translocation strategies were recognized: all resource translocation (ART), partial resource translocation (PRT), and no resource translocation (NRT). These strategies depended on the translocation cost, shape of resource–fitness curve, and original resource condition for each module. Generally, a large translocation cost and a concave resource–fitness relationship promoted NRT or PRT. Meanwhile, a small translocation cost and convex resource–fitness relationship facilitated ART. The type of translocation cost did not strongly affect the optimal resource translocation patterns, although ART was never an optimal strategy when the cost was ratio-dependent. Resource translocation patterns found in modular plants were discussed in the light of our model results.