Abstract

Clonal plants spread horizontally, and can transport nutrients between ramets. Decaying biomass feeds back nutrients into the soil, but importantly, the place of deposition may differ from the place of uptake. To our knowledge, the present model is the first attempt to couple population dynamics with resource dynamics with the consideration of lateral transport. The simulations start from various initial resource patterns. Six types of clonal plants are compared, which differ in the birth and survival rates of ramets. Size of the ramet population and the amount of translocated resource are recorded over time. In addition, we consider the pattern of gaps in the canopy of the clonal plant from the aspect of two colonizer species: a strong and a weak competitor. The results suggest that the most important factor determining the impact of a clonal plant on its environment is ramet survival; the rate of ramet production is only secondary. Phenotypic plasticity in the production of ramets does not appear to be important: it has only minor effect on resource translocation and on the availability of colonizable gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.