As a high-frequency disaster with potentially devastating consequences, urban fires not only threaten the lives of city residents but can also lead to severe property losses, especially for hazardous chemical leaking scenarios. Quick and scientific decision-making regarding resource allocation during urban fire emergency responses is crucial for reducing disaster damages. Based on several key factors such as the number of trapped individuals and hazardous chemical leaks during the early stages of an incident, an emergency weight system for resource allocation is proposed to effectively address complex situations. In addition, a multi-objective optimization model is built to achieve the shortest response time for emergency rescue teams and the lowest cost for material transportation. Additionally, a pre-allocated bee swarm algorithm is introduced to mitigate the issue of local incident points being unable to participate in rescue due to low weights, and a comparison of traditional genetic algorithms and particle swarm optimization algorithms is conducted. Experiments conducted in a virtual urban fire scenario validate the effectiveness of the proposed model. The results demonstrate that the proposed model can effectively achieve the dual goals of minimizing transportation time and costs. Furthermore, the bee swarm algorithm exhibits advantages in convergence speed, allowing for the faster identification of ideal solutions, thereby providing a scientific basis for the rapid allocation of resources in urban fire emergency rescues.
Read full abstract