AbstractWe utilize a novel, high‐power, tunable, continuous wave (CW) deep UV laser to measure resonance Raman spectra of phenolate solutions with high signal‐to‐noise ratios (SNR). In UV resonance Raman (UVRR), increased coupling of the excitation light with a chromophore can transfer molecules into excited states that cause increased heating and photochemistry. Deep UV lasers have traditionally utilized high peak powers to enable efficient single‐pass nonlinear conversion from visible into near infrared light. Nonlinear phenomena such as the formation of transient radical species, Raman saturation, thermal heating, and dielectric breakdown can introduce extraneous light sources that can complicate the interpretation of the Raman spectrum. Dielectric breakdown can increase the baseline, increase noise, and sometimes saturate the detector, preventing Raman detection. Spontaneous Raman scattering intensities should scale linearly with the excitation light intensity. However, this linear behavior does not always occur with pulsed laser excitation. This occurs because stimulated Raman scattering can cause a superlinear intensity response, or transient absorption can cause sublinear intensity responses. CW laser excitation excites samples with electric fields that are much lower than typical pulsed laser excitation. This eliminates the nonlinear responses. The geometry of our new CW laser enables high gain in the harmonic generation cavities that achieve high harmonic generation efficiencies. Average power in the deep UV is >30 mW for wavelengths as short as 206 nm. In the work here, we demonstrate that CW excitation is ideal for resonance Raman measurements in general to reduce spectral complexity.
Read full abstract