Extreme climate events, particularly droughts, pose significant threats to vegetation, severely impacting ecosystem functionality and resilience. However, the limited temporal resolution of current satellite data hinders accurate monitoring of vegetation's diurnal responses to these events. To address this challenge, we leveraged the advanced satellite ECOSTRESS, combining its high-resolution evapotranspiration (ET) data with a LightGBM model to generate the hourly continuous ECOSTRESS-based ET (HC-ETECO) for the middle and lower reaches of the Yangtze River Basin (YRB) from 2015 to 2022. This dataset showed strong agreement with both ground-based and satellite observations. Utilizing the SPEI, we identified the significant drought period: September to November 2019 and August to September 2022. By integrating hourly Solar-Induced Chlorophyll Fluorescence (SIF) data, we observed that during drought period, the typical afternoon peak in SIF was absent. In contrast to non-drought period, morning photosynthesis and SIF-based Water Use Efficiency (WUESIF) anomalies were primarily driven by high Vapor Pressure Deficit (VPD), while the afternoon reductions were influenced by both high VPD and low Soil Moisture (SM) as the drought progressed. Our simulated HC-ETECO data revealed that ET in the middle and lower reaches of the YRB was consistently lower than normal during drought period. Attribution analysis indicated that this reduction was primarily driven by midday temperature increases and high VPD, suggesting that vegetation in the region copes with drought stress predominantly by limiting water loss. These findings highlight the utility of the generated high-resolution ET dataset in advancing our understanding of vegetation dynamics under drought climate conditions. This work provides critical insights for enhancing climate adaptation strategies and enhancing ecosystem management practices in the face of increasing climate variability.
Read full abstract