The abnormal expression of long noncoding RNAs (lncRNAs) plays an important role in the regulation of human cancer progression and drug resistance. The lncRNA OPI5-AS1 is a crucial regulator in some cancers; however, its role in cisplatin resistance of osteosarcoma remains unclear. We found that OIP5-AS1 was significantly upregulated in cisplatin-resistant (CR) osteosarcoma cells MG63-CR and SaOS2-CR compared with the corresponding parental cells. OIP5-AS1 silencing suppressed cell growth in vitro and in vivo, and promoted apoptosis of MG63-CR and SaOS2-CR cells, indicating that knockdown of OIP5-AS1 significantly decreased cisplatin resistance in MG63-CR and SaOS2-CR cells. This conclusion was supported by the decreased expression of the drug resistance-related factors multidrug resistance-associated protein 1 (MRP1) and P-glycoprotein (P-gp) upon OIP5-AS1 silencing. In addition, OIP5-AS1 downregulation suppressed the PI3K/AKT/mTOR signaling pathway. Importantly, we demonstrated that OIP5-AS1 functions as a competing endogenous RNA of miR-340-5p and regulates the expression of lysophosphatidic acid acyltransferase (LPAATβ), which is a target of miR-340-5p. Moreover, downregulation of miR-340-5p partly reversed the inhibitory effect of OIP5-AS1 knockdown on the PI3K/AKT/mTOR pathway and therefore counteracted cisplatin resistance in MG63-CR and SaOS2-CR cells. In conclusion, OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATβ/PI3K/AKT/mTOR signaling pathway by sponging the miR-340-5p. Our results contribute to a better understanding of the function and mechanism of OIP5-AS1 in osteosarcoma cisplatin resistance.