Abstract

When frozen, Staphylococcus aureus survives in a sublethally injured state. However, S. aureus can recover at a suitable temperature, which poses a threat to food safety. To elucidate the resuscitation mechanism of freezing survived S. aureus, we used cells stored at -18°C for 90 days as controls. After resuscitating the survived cells at 37°C, the viable cell numbers were determined on tryptic soy agar with 0.6% yeast extract (TSAYE), and the non-injured-cell numbers were determined on TSAYE supplemented with 10% NaCl. The results showed that the total viable cell number did not increase within the first 3 h of resuscitation, but the osmotic regulation ability of freezing survived cells gradually recovered to the level of healthy cells, which was evidenced by the lack of difference between the two samples seen by differential cell enumeration. Scanning electron microscopy (SEM) showed that, compared to late exponential stage cells, some frozen survived cells underwent splitting and cell lysis due to deep distortion and membrane rupture. Transmission electron microscopy (TEM) showed that, in most of the frozen survived cells, the nucleoids (low electronic density area) were loose, and the cytoplasmic matrices (high electronic density area) were sparse. Additionally, a gap was seen to form between the cytoplasmic membranes and the cell walls in the frozen survived cells. The morphological changes were restored when the survived cells were resuscitated at 37°C. We also analyzed the differential proteome after resuscitation using non-labeled high-performance liquid chromatography–mass spectrometry (HPLC-MS). The results showed that, compared with freezing survived S. aureus cells, the cells resuscitated for 1 h had 45 upregulated and 73 downregulated proteins. The differentially expressed proteins were functionally categorized by gene ontology enrichment, KEGG pathway, and STRING analyses. Cell membrane synthesis-related proteins, oxidative stress resistance-related proteins, metabolism-related proteins, and virulence factors exhibited distinct expression patterns during resuscitation. These findings have implications in the understanding of the resuscitation mechanism of freezing survived S. aureus, which may facilitate the development of novel technologies for improved detection and control of foodborne pathogens in frozen food.

Highlights

  • Staphylococcus aureus is a leading cause of gastroenteritis resulting from the consumption of contaminated food (Hennekinne et al, 2012)

  • A previous study reported that cold stress induced a high percentage of small colony variants (SCVs) when S. aureus was subjected to a temperature of 4◦C for a prolonged period

  • To investigate proteins related to resuscitation, we used freezing survived cells of S. aureus as a control to compare their proteomic pattern to that of resuscitated cells; the technique used for this comparison was non-labeled high-performance liquid chromatography–mass spectrometry (HPLC-MS) quantitative proteomic analysis

Read more

Summary

Introduction

Staphylococcus aureus is a leading cause of gastroenteritis resulting from the consumption of contaminated food (Hennekinne et al, 2012). This study implemented the non-labeling high-performance liquid chromatography–mass spectrometry (HPLC-MS) technique to analyze the differential proteome of S. aureus cells resuscitated after freezing. To investigate proteins related to resuscitation, we used freezing survived cells of S. aureus as a control to compare their proteomic pattern to that of resuscitated cells; the technique used for this comparison was non-labeled HPLC-MS quantitative proteomic analysis.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.