Production of sweetpotatoes, Ipomoea batatas (L.) Lam. (Convolvulaceae), is limited by several insect pests, including Diabrotica spp. (Coleoptera: Chrysomelidae), and new integrated pest management (IPM) techniques for this crop are needed. Host plant resistance is one attractive approach that fits well into IPM programs. A host plant resistance research program typically depends on reliable bioassay procedures to streamline evaluation of germplasm. Thus, a bioassay technique was developed for evaluating sweetpotato germplasm by using adults of the banded cucumber beetle, Diabrotica balteata LeConte, and spotted cucumber beetle, Diabrotica undecimpunctata howardi Barber. A single beetle was placed on a piece of sweetpotato peel (periderm and cortex with stele removed) that was embedded periderm-side up in plaster in a petri dish. Feeding and longevity of insects on 30 sweetpotato genotypes were evaluated in two experiments by using this procedure. Adult longevity ranged from 7 to 11 d for starved individuals to 211 d for beetles fed a dry artificial diet. Longevity of banded cucumber beetles that fed on sweetpotato peels ranged from 12 d for the most-resistant genotype to 123 d for SC1149-19, a susceptible control cultivar. Longevity of spotted cucumber beetles was slightly shorter than longevity of banded cucumber beetles. For the most resistant sweetpotato genotypes, both Diabrotica species exhibited a significant delay in initiation of feeding, and more beetles died on these genotypes before they had fed. Both antibiosis and nonpreference (antixenosis) are important mechanisms of resistance in sweetpotato genotypes. This bioassay was consistent with field results, indicating that this technique could be useful for evaluating resistance to Diabrotica spp. in sweetpotato genotypes.