Selection for virulence of Globodera pallida on potato cultivars was studied for four generations under controlled conditions. The reproduction rate (Pf/Pi) of a mixed Pa2/3 population increased by a factor of 61 during rearing on the partially resistant potato cv. Darwina compared to rearing on the susceptible cv. Irene. This was a result of selection for virulence on cv. Darwina, and achieving the Hardy–Weinberg equilibrium on cv. Irene. Increased virulence also significantly raised the reproduction rate on several other Solanum genotypes. These changes could be explained reasonably well by the monogenic inheritance of a virulence factor breaking the Grp1 locus. The virulence changes were probably mainly evoked by this gene only, inherited from S. vernei 1‐3 or S. vernei 24/20. The Grp1 locus has probably provided the differential S. vernei hybrid (VTn)2 62‐33‐3 with its resistance to the Pa2 group and not to the Pa3 group. Alternation of cultivars did not halt selection if the cultivars highly differentiated between the Pa2 and Pa3 populations. Only when alternation was with cultivars that harboured a different resistance gene against Pa3 was selection for virulence delayed. Differences in virulence levels (i.e. reproduction rates) within the nematode population determined the rate of selection, not the resistance level itself. Selection of a Pa3 population for three generations on cv. Karakter not only increased the reproduction rate on cv. Karakter itself by a factor 4.2, but also raised the reproduction on other potato genotypes. A simple monogenic model could explain these changes in virulence.
Read full abstract