Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection. The expression level of GhRac9 peaked at 24 h after V. dahliae infection and remained consistently elevated from 24 to 48 h upon SA treatment. Furthermore, silencing GhRac9 using VIGS (Virus-induced gene silence) method attenuated cotton defense response to V. dahliae by reducing ROS (Reactive Oxygen Species) burst, peroxidase activity and lignin content in cotton plants. On the contrary, heterologous overexpression of GhRac9 enhanced Arabidopsis resistance to V. dahliae and significantly increased ROS production in Arabidopsis plants. Furthemore, transient overexpressing of GhRac9 significantly enhanced ROS burst and POD activity in cotton plants. In addition, GhRac9 positively regulated the expression levels of the genes related to SA signaling pathway in cotton plants. In conclusion, GhRac9 functioned as a positive regulator in the cotton defense response to V. dahliae, which provided important insights for breeding new cotton varieties resistant to V. dahliae.
Read full abstract