Accurate estimation of State-of-Charge (SoC) is essential for ensuring the safe and efficient operation of electric vehicles (EVs). Currently, second-order RC equivalent circuit models do not account for the influence of battery charging and discharging states on battery parameters. Additionally, offline parameter identification becomes inaccurate as the battery ages. Online identification requires real-time parameter updates during the SoC estimation process, which increases the computational complexity and reduces the computational efficiency of real vehicle Battery Management System (BMS) chips. To address these issues, this paper proposes a SoC estimation method that combines online and offline identification based on an optimized second-order RC equivalent circuit model, which distinguishes it from existing methods in the field. On the basis of the traditional second-order RC model, the Ohmic resistance (R0), polarization resistance (R1), polarization capacitance (C1), diffusion resistance (R2), and diffusion capacitance (C2) during the charging and discharging processes are discussed separately. R0, which does not change frequently, is identified offline, while R1, R2, C1, and C2, which dynamically change with time and current, are identified online. To thoroughly verify the feasibility of the proposed method, we construct an SoC estimation test bench, which allows us to adjust the battery’s surface temperature in real time using a temperature control chamber. Experimental validation under Federal Urban Driving Schedule (FUDS) (−10 °C to 45 °C, 80% battery capacity) and Dynamic Stress Test (DST) (−10 °C to 45 °C, 8% battery capacity) conditions demonstrate that our method improves SoC estimation accuracy by 16.28% under FUDS and 28.2% under DST compared to the improved GRU-based transfer learning method, while maintaining system SoC estimation efficiency.
Read full abstract