A quantitative evaluation model is proposed to assess the seismic resilience of water supply systems. The water supply system is divided into three parts: water sources, aboveground infrastructures, and underground pipeline network, and importance factors for the different parts are quantified. Resilience demand is expressed as the desirable functionality loss and the recovery time of the water supply system after an earthquake. First, seismic fragility models are established for the different components of the water supply system. A water quality index is utilized to represent the impact of earthquakes on the water sources, the seismic performances of aboveground infrastructures are represented by fragility curves, and the repair rate in terms of number of repairs per kilometer is adopted for the pipeline network. Then, the post-earthquake functionality of the water supply system is quantified based on seismic fragility analysis. Changes in the water quality index are used to indicate the functionality losses related to water sources, the functionality losses of aboveground infrastructures are represented by the economic losses derived from component fragility curves, and post-earthquake functionality losses in the underground pipeline network are quantified by hydraulic simulations. The functionalities of the three parts are calculated separately, and then the overall system functionalities are obtained as the sum of the weighted functionalities of the three parts. Finally, a repair strategy is developed and the recovery time is calculated considering the system damage scenarios, system functionality analyses, and resource reserves. The proposed resilience assessment model considers all components of the water supply system, and the results are reliable when the basic information is complete and accurate.