A nonzero residual intersymbol interference (ISI) causes the symbol error rate (SER) to increase where the achievable SER may not answer any more on the system’s requirements. In the literature, we may find for the single-input-single-output (SISO) case a closed-form approximated expression for the SER that takes into account the achievable performance of the chosen blind adaptive equalizer from the residual ISI point of view and a closed-form approximated expression for the residual ISI valid for the single-input-multiple-output (SIMO) case. Both expressions were obtained by assuming that the input noise is a white Gaussian process where the Hurst exponent (<i>H</i>) is equal to 0.5. In this paper, we derive a closed-form approximated expression for the residual ISI obtained by blind adaptive equalizers for the SIMO case, valid for fractional Gaussian noise (fGn) input where the Hurst exponent is in the region of <svg style="vertical-align:-0.546pt;width:82.224998px;" id="M1" height="11.85" version="1.1" viewBox="0 0 82.224998 11.85" width="82.224998" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.113)"><path id="x30" d="M241 635q53 0 94 -28.5t63.5 -76t33.5 -102.5t11 -116q0 -58 -11 -112.5t-34 -103.5t-63.5 -78.5t-94.5 -29.5t-95 28t-64.5 75t-34.5 102.5t-11 118.5q0 58 11.5 112.5t34.5 103t64.5 78t95.5 29.5zM238 602q-32 0 -55.5 -25t-35.5 -68t-17.5 -91t-5.5 -105
q0 -76 10 -138.5t37 -107.5t69 -45q32 0 55.5 25t35.5 68.5t17.5 91.5t5.5 105t-5.5 105.5t-18 92t-36 68t-56.5 24.5z" /></g><g transform="matrix(.017,-0,0,-.017,8.222,11.113)"><path id="x2E" d="M113 -12q-24 0 -39.5 16t-15.5 42q0 24 16 40.5t40 16.5t40 -16.5t16 -40.5q0 -26 -16 -42t-41 -16z" /></g><g transform="matrix(.017,-0,0,-.017,12.098,11.113)"><path id="x35" d="M153 550l-26 -186q79 31 111 31q90 0 141.5 -51t51.5 -119q0 -93 -89 -166q-85 -69 -173 -71q-32 0 -61.5 11.5t-41.5 23.5q-18 17 -17 34q2 16 22 33q14 9 26 -1q61 -50 124 -50q60 0 93 43.5t33 104.5q0 69 -41.5 110t-121.5 41q-53 0 -102 -20l38 305h286l6 -8
l-26 -65h-233z" /></g><g transform="matrix(.017,-0,0,-.017,24.966,11.113)"><path id="x2264" d="M531 71l-474 214v50l474 215v-56l-416 -184l416 -183v-56zM531 -40h-474v50h474v-50z" /></g><g transform="matrix(.017,-0,0,-.017,39.67,11.113)"><path id="x1D43B" d="M865 650q-1 -4 -4 -14t-4 -14q-62 -5 -77 -19.5t-29 -82.5l-74 -394q-12 -61 -0.5 -77t75.5 -21l-6 -28h-273l8 28q64 5 82 21t29 76l36 198h-380l-37 -197q-11 -64 0.5 -78.5t79.5 -19.5l-6 -28h-268l6 28q60 6 75.5 21.5t26.5 76.5l75 394q13 66 2 81.5t-77 20.5l8 28
h263l-6 -28q-58 -5 -75.5 -21t-30.5 -81l-26 -153h377l29 153q12 67 2 81t-74 21l5 28h268z" /></g><g transform="matrix(.017,-0,0,-.017,59.303,11.113)"><path id="x3C" d="M512 -3l-437 233v51l437 233v-58l-378 -200v-2l378 -199v-58z" /></g><g transform="matrix(.017,-0,0,-.017,74.007,11.113)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g> </svg>. Based on this new expression for the residual ISI, a closed-form approximated expression is obtained for the SER valid for the SIMO and fGn case. In this paper, we show via simulation results that the SER might get improved for increasing values of <i >H</i>.