Abstract

Recently, a closed-form approximated expression was derived by the same author for the achievable residual intersymbol interference (ISI) case that depends on the step-size parameter, equalizer's tap length, input signal statistics, signal to noise ratio (SNR), and channel power and is valid for fractional Gaussian noise (fGn) input where the Hurst exponent is in the region of . But this expression was obtained for the blind adaptive case and cannot be applied to the nonblind adaptive version. Up to now, the achievable residual ISI for the non-blind adaptive case could be obtained only via simulation. In this paper, we derive a closed-form approximated expression (or an upper limit) for the residual ISI obtained by non-blind adaptive equalizers valid for fractional Gaussian noise (fGn) input where the Hurst exponent is in the region of . This new obtained expression depends on the step-size parameter, equalizer's tap length, input signal statistics, SNR, channel power, and the Hurst exponent parameter. Simulation results indicate that there is a high correlation between the calculated results (obtained from the new obtained expression for the residual ISI) and those obtained from simulating the system.

Highlights

  • We consider a nonblind deconvolution problem in which we observe the output of an unknown, possibly nonminimum phase, linear system (single-input-single-output (SISO) FIR system) from which we want to recover its input using an adjustable linear filter and training symbols

  • We derive a closed-form approximated expression for the residual intersymbol interference (ISI) obtained by non-blind adaptive equalizers valid for fractional Gaussian noise input where the Hurst exponent is in the region of 0.5 ≤ H < 1. This new obtained expression depends on the step-size parameter, equalizer’s tap length, input signal statistics, signal to noise ratio (SNR), channel power, and the Hurst exponent parameter

  • [2], a closed-form approximated expression was derived for the achievable residual ISI case that depends on the step-size parameter, equalizer’s tap length, input signal statistics, SNR, Hurst exponent, and channel power

Read more

Summary

Introduction

We consider a nonblind deconvolution problem in which we observe the output of an unknown, possibly nonminimum phase, linear system (single-input-single-output (SISO) FIR system) from which we want to recover its input (source) using an adjustable linear filter (equalizer) and training symbols. [2], a closed-form approximated expression was derived for the achievable residual ISI case that depends on the step-size parameter, equalizer’s tap length, input signal statistics, SNR, Hurst exponent, and channel power This expression is valid only for the blind adaptive case and cannot be used for the nonblind version. We derive a closed-form approximated expression (or an upper limit) for the residual ISI obtained by nonblind adaptive equalizers that depends on the step-size parameter, equalizer’s tap length, input signal statistics, SNR, channel power, and Hurst exponent parameter. This expression is valid for fGn input where the Hurst exponent is in the region of 0.5 ≤ H < 1.

System Description
Residual ISI for Fractional Gaussian Noise Input
Simulation
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call