Exhaled breath condensate (EBC) contains extracellular DNA that may originate from pathological lesions of the respiratory tract and can be a genetic marker of pulmonary malignancy. We tested whether complete surgical excision of lung cancer will decrease exhalation of mutated KRAS oncogene. Fifty seven patients with clinical diagnosis of lung cancer and detectable KRAS mutations in pre-surgery EBC-DNA were qualified for surgical treatment. Point mutations at codon 12 of KRAS oncogene were detected using mutant-enriched PCR technique in DNA from pre-surgery blood, EBC collected before, 7 and 30 days after surgery and from specimens of resected tumor and normal pulmonary parenchyma. The ratio of mutated to wild type KRAS DNA (R mut/wild KRAS) was calculated for each specimen after electrophoresis and densitometry of the final amplification and digestion product. In 46 patients non-small cell lung cancer (NSCLC) and in 11 benign lesion (BL) were confirmed. All blood and tumor specimens were positive for KRAS mutations, while 41 specimens of normal pulmonary parenchyma were negative. In NSCLC patients pre-surgery EBC R mut/wild KRAS of 0.20 ± 0.03 decreased by 1.3- and 3.7-times (p < 0.001) at 7th and 30th day and 10 EBC specimens at day 30th became negative. The highest R mut/wild KRAS was found in NSCLC specimens - 1.36 ± 0.29 while the lowest in pulmonary parenchyma - 0.02 ± 0.03 (p < 0.001). R mut/wild KRAS in EBC did not correlate with the blood and cancer ratios. Determination of mutated KRAS oncogene in EBC can be potentially helpful in the follow-up of surgical treatment of pulmonary malignancy.
Read full abstract