One of the possible causes of enhanced atherosclerosis in patients with chronic kidney disease (CKD) is the accumulation of uremic toxins. Since macrophage foam cell formation is a hallmark of atherosclerosis, we examined the direct effect of indoxyl sulfate (IS), a representative uremic toxin, on macrophage function. Macrophages differentiated from THP-1 cells were exposed to IS in vitro. IS decreased the cell viability of THP-1 derived macrophages but promoted the production of inflammatory cytokines (IL-1β, IS 1.0 mM: 101.8 ± 21.8 pg/mL vs. 0 mM: 7.0 ± 0.3 pg/mL, TNF-α, IS 1.0 mM: 96.6 ± 11.0 pg/mL vs. 0 mM: 15.1 ± 3.1 pg/mL) and reactive oxygen species. IS reduced macrophage cholesterol efflux (IS 0.5 mM: 30.3% ± 7.3% vs. 0 mM: 43.5% ± 1.6%) and decreased ATP-binding cassette transporter G1 expression. However, lipid uptake into cells was not enhanced. A liver X receptor (LXR) agonist, T0901317, improved IS-induced production of inflammatory cytokines as well as reduced cholesterol efflux. In conclusion, IS induced inflammatory reactions and reduced cholesterol efflux in macrophages. Both effects of IS were improved with activation of LXR. Direct interactions of uremic toxins with macrophages may be a major cause of atherosclerosis acceleration in patients with CKD.
Read full abstract