The increasing availability of biomedical data creates valuable resources for developing new deep learning algorithms to support experts, especially in domains where collecting large volumes of annotated data is not trivial. Biomedical data include several modalities containing complementary information, such as medical images and reports: images are often large and encode low-level information, while reports include a summarized high-level description of the findings identified within data and often only concerning a small part of the image. However, only a few methods allow to effectively link the visual content of images with the textual content of reports, preventing medical specialists from properly benefitting from the recent opportunities offered by deep learning models. This paper introduces a multimodal architecture creating a robust biomedical data representation encoding fine-grained text representations within image embeddings. The architecture aims to tackle data scarcity (combining supervised and self-supervised learning) and to create multimodal biomedical ontologies. The architecture is trained on over 6,000 colon whole slide Images (WSI), paired with the corresponding report, collected from two digital pathology workflows. The evaluation of the multimodal architecture involves three tasks: WSI classification (on data from pathology workflow and from public repositories), multimodal data retrieval, and linking between textual and visual concepts. Noticeably, the latter two tasks are available by architectural design without further training, showing that the multimodal architecture that can be adopted as a backbone to solve peculiar tasks. The multimodal data representation outperforms the unimodal one on the classification of colon WSIs and allows to halve the data needed to reach accurate performance, reducing the computational power required and thus the carbon footprint. The combination of images and reports exploiting self-supervised algorithms allows to mine databases without needing new annotations provided by experts, extracting new information. In particular, the multimodal visual ontology, linking semantic concepts to images, may pave the way to advancements in medicine and biomedical analysis domains, not limited to histopathology.
Read full abstract