Abstract

PurposeAlzheimer’s disease (AD) is a progressive, incurable human brain illness that impairs reasoning and retention as well as recall. Detecting AD in its preliminary stages before clinical manifestations is crucial for timely treatment. Magnetic Resonance Imaging (MRI) provides valuable insights into brain abnormalities by measuring the decrease in brain volume expressly in the mesial temporal cortex and other regions of the brain, while Positron Emission Tomography (PET) measures the decrease of glucose concentration in the temporoparietal association cortex. When these data are combined, the performance of AD diagnostic methods could be improved. However, these data are heterogeneous and there is a need for an effective model that will harness the information from both data for the accurate prediction of AD.MethodsTo this end, we present a novel heuristic early feature fusion framework that performs the concatenation of PET and MRI images, while a modified Resnet18 deep learning architecture is trained simultaneously on the two datasets. The innovative 3-in-channel approach is used to learn the most descriptive features of fused PET and MRI images for effective binary classification of AD.ResultsThe experimental results show that the proposed model achieved a classification accuracy of 73.90% on the ADNI database. Then, we provide an Explainable Artificial Intelligence (XAI) model, allowing us to explain the results.ConclusionOur proposed model could learn latent representations of multimodal data even in the presence of heterogeneity data; hence, the proposed model partially solved the issue with the heterogeneity of the MRI and PET data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.