Recently, conventional representation-based classification (RBC) methods demonstrate promising performance in image recognition. However, conventional RBCs only use a kind of deviations between the test sample and the linear combination of training samples of each class to perform classification. In many cases, a single kind of deviations corresponding to each class cannot effectively reflect the difference between the test sample and reconstructed sample of each class. Moreover, in practical applications, limited training samples are not able to reflect the possible changes of the image sufficiently. In this paper, we propose a novel scheme to tackle the above-mentioned problems. Specifically, we first use the original training samples to generate corresponding mirror samples. Thus, the original sample set and its mirror counterpart are treated as two separate training groups. Secondly, we perform collaborative representation classification on these two groups from which each class leads to two kinds of deviations, respectively. Finally, we fuse two kinds of deviations of each class and their correlation coefficient to classify the test sample. The correlation coefficient is defined for two kinds of deviations of each class. Experimental results on four databases show the proposed scheme can improve the recognition rate in image-based recognition.