Abstract

The sparse representation-based classification (SRC) method is a powerful tool to present high-dimensionality data and its superiority in many fields, especially in face recognition application has been proved. With sparsity appropriately harnessed, the SRC can solve face classification problems caused by varying expression, illumination as well as occlusion and disguise. However, face images as high-dimensionality data are usually noisy and the dimensionality is always larger than the number of training sample in real-world applications, which bring a disadvantage for the performance of SRC. Therefore, it is beneficial to perform dimensionality reduction (DR) before utilizing the SRC method. But most prevalent DR methods have no direct connection to SRC. In this paper, we proposed a supervised DR algorithm which suits SRC well and improves the discriminating ability in the low-dimensionality space. The proposed method utilizes the fisher discriminant criterion and low-dimensionality reconstructive restriction to extract the discriminating structure of data. The extensive experiments on public face databases verified the effectiveness of the supervised DR with the model of sparse representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.