Abstract
In this paper, a new sparsity formulation called position-dictionary based sparse representation is developed for frontal face recognition. Different from the sparse representation based classification (SRC) method and the Gabor-feature based SRC (GSRC) method which both employ a global dictionary to decompose image patches, the proposed method constructs a position-dictionary for each location using training patches in the corresponding location since they resemble each other and are more likely to favor the same atoms. Sparse coefficients of each position-patch can be obtained by solving an \(l_{1}\)-norm minimization problem. For each face image, sparse coefficients of position-patches are pooled to construct a discriminative upper level feature to represent face image. PCA is used to perform dimension reduction. Each testing sample is represented as a sparse linear combination of all training samples, and recognition is accomplished by evaluating which class of training samples leads to the minimum reconstruction error. We compared the proposed method with SRC and GSRC method on three benchmark face databases. Experimental results show that the proposed method achieves higher recognition rates and is robust to a certain degree of occlusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.