Low-temperature magnetocaloric materials are of great importance for potential applications of gas liquefaction such as nitrogen, hydrogen and helium for their low liquidation temperatures (∼4 K for helium, ∼20 K for hydrogen and ∼77 K for nitrogen respectively), of which the working temperature, the maximal magnetic entropy change ((-ΔSM)max), the maximal adiabatic temperature change ((ΔTad)max), and the temperature average entropy change (TEC) are the key assessment parameters. Herein, we designed and synthesized Er1-xTmxGa series compounds based on the optimization of the spin quantum number (Spin) with their magnetic ordering temperature successfully adjusted from 31.0 K to 15.0 K, which covers the liquid hydrogen temperature range. Particularly, Er0.8Tm0.2Ga shows outstanding (-ΔSM)max, TEC(20), and (ΔTad)max values of 13.6 J/kg K, 10.1 J/kg K, and 4.3 K under the field change of 0–2 T, respectively, which are increased by 32.0 %, 36.4 %, and 48.2 % compared with the parent ErGa compound. It should be noted that the refrigerant capacity (RC) of Er0.8Tm0.2Ga is not only larger than ErGa but also larger than TmGa. Furthermore, neutron powder diffraction (NPD) was employed on Er0.8Tm0.2Ga to reveal the physical mechanism of its enhanced magnetocaloric effect (MCE). It is found that for Er0.8Tm0.2Ga the more pronounced order-to-disorder transition than the spin reorientation (SR) transition, the characteristic second order phase transition, and the existence of the short-range magnetic ordering above the magnetic ordering temperature should be jointly responsible for its large magnetocaloric effect.
Read full abstract