Blood flow to several tissues changes during an acute bout of exercise. The kidney is one of the organs that are most affected by exercise-induced blood redistribution. The aim of the present study was to investigate possible exercise-induced vascular reactivity changes in renal resistance arteries in rats. Renal resistance arteries were isolated from rats that underwent 8 weeks of swimming and sedentary control rats, and the arteries were evaluated using wire myography. Similar dilation responses to acetylcholine, bradykinin, adenosine, isoproterenol, and sodium nitroprusside were observed in both groups. The vasoconstrictive agents vasopressin, endothelin-1, potassium chloride, and thromboxane A2 also induced similar responses in both groups; however, the trained group had an increased constrictive response to norepinephrine compared to the control rats. The results of our study show that renal resistance arteries of trained rats behave differently than conduit-type renal arteries and exhibit an increased contractile response to sympathetic agonists. This finding provides supporting evidence that renal blood flow markedly decreases during exercise in trained individuals.
Read full abstract