Abstract

Heme oxygenase (HO) catabolizes heme into biliverdin, carbon monoxide (CO), and free iron. CO generated in endothelial and smooth muscle layers of blood vessels modulates vascular tone by inducing relaxation of vascular smooth muscle cells. The aim of this study was to verify the role played by HO in regulating renal arterial resistance and Na(+) excretion in cirrhosis. Twenty control rats and 20 rats with CCl(4)(-) induced cirrhosis, 10 of which were chronically treated with the HO inducer cobalt-protoporphyrin (CoPP), were studied. Pressurized renal interlobar arteries were challenged with increasing doses of phenylephrine (PE) and acetylcholine (ACh). Dose-response curves were evaluated under basal conditions and after inhibition of HO with chromium-mesoporphyrin (CrMP). HO-1 (inducible form) and HO-2 (constitutive form) expression was measured in the main and interlobar renal arteries. Serum and urinary levels of Na(+) and creatinine were also evaluated. In renal interlobar arteries from cirrhotic rats, the response to PE was increased, while that to ACh was blunted. After HO inhibition, the responsiveness to these vasoactive substances was comparable in the two groups. In cirrhotic rats, HO-1 expression was impaired in the main and the interlobar renal arteries. Chronic HO induction normalized the response to the vasoconstrictor, but not to the vasodilator. Cirrhotic rats treated with CoPP showed higher urinary Na(+) concentration and fractional Na(+) excretion, compared to both untreated cirrhotic and control rats. In cirrhotic rats, an impaired HO-1 expression promotes vasoconstriction of renal interlobar arteries. Chronic HO induction normalizes the sensitivity to PE and promotes Na(+) excretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.