Abstract

Intracoronary delivery of c-kit-positive human cardiac stem cells (hCSCs) is a promising approach to repair the infarcted heart, but it is severely limited by the poor survival of donor cells. Cobalt protoporphyrin (CoPP), a well known heme oxygenase 1 inducer, has been used to promote endogenous CO generation and protect against ischemia/reperfusion injury. Therefore, we determined whether preconditioning hCSCs with CoPP promotes CSC survival. c-kit-positive, lineage-negative hCSCs were isolated from human heart biopsies. Lactate dehydrogenase release assays demonstrated that preconditioning CSCs with CoPP markedly enhanced cell survival after oxidative stress induced by H(2)O(2), concomitant with up-regulation of heme oxygenase 1, COX-2, and anti-apoptotic proteins (BCL2, BCL2-A1, and MCL-1) and increased phosphorylation of NRF2. Apoptotic cytometric assays showed that pretreatment of CSCs with CoPP enhanced the cells' resistance to apoptosis induced by oxidative stress. Conversely, knocking down HO-1, COX-2, or NRF2 by shRNA gene silencing abrogated the cytoprotective effects of CoPP. Further, preconditioning CSCs with CoPP led to a global increase in release of cytokines, such as EGF, FGFs, colony-stimulating factors, and chemokine ligand. Conditioned medium from cells pretreated with CoPP conferred naive CSCs remarkable resistance to apoptosis, demonstrating that cytokines released by preconditioned cells play a key role in the anti-apoptotic effects of CoPP. Preconditioning CSCs with CoPP also induced an increase in the phosphorylation of Erk1/2, which are known to modulate multiple pro-survival genes. These results potentially provide a simple and effective strategy to enhance survival of CSCs after transplantation and, therefore, their efficacy in repairing infarcted myocardium.

Highlights

  • Nothing is known regarding the anti-apoptotic effect of Heme oxygenase (HO)-1 on human cardiac stem cells (hCSCs)

  • To test the hypothesis that Cobalt protoporphyrin (CoPP) is cytoprotective for hCSCs, we performed lactate dehydrogenase (LDH) release assays to determine the survival of CoPPpreconditioned hCSCs following oxidative stress induced by H2O2 (Fig. 1)

  • The data showed that cells pretreated with 10 ␮M CoPP exhibited the minimum release of LDH, indicating maximal protection of cells against oxidative stress at this concentration; we used 10 ␮M as the optimal concentration of CoPP to precondition hCSCs in the following work

Read more

Summary

Introduction

Nothing is known regarding the anti-apoptotic effect of HO-1 on hCSCs. Results: HO-1 expression induced by CoPP enhances hCSC survival through activation of the ERK/NRF2 signaling pathway and cytokine release. Lactate dehydrogenase release assays demonstrated that preconditioning CSCs with CoPP markedly enhanced cell survival after oxidative stress induced by H2O2, concomitant with up-regulation of heme oxygenase 1, COX-2, and anti-apoptotic proteins (BCL2, BCL2-A1, and MCL-1) and increased phosphorylation of NRF2. Conditioned medium from cells pretreated with CoPP conferred naive CSCs remarkable resistance to apoptosis, demonstrating that cytokines released by preconditioned cells play a key role in the anti-apoptotic effects of CoPP. Preconditioning CSCs with CoPP induced an increase in the phosphorylation of Erk1/2, which are Grants R21 HL104315 and R01 HL114951 Tel.: 502-852-1837; Fax: 502-852-6474; E-mail: rbolli@ louisville.edu

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call