Per- and poly-fluoroalkyl substances (PFAS) are concerning contaminants due to their ubiquity, persistence, and toxicity. Conventional PFAS water treatments such as granular activated carbon are limited by low adsorption rates and capacities. Carbon-based nano-adsorbents with enhanced surface areas address these limitations but are hindered by their high cost and toxicity. Cellulose nanocrystals (CNC) are promising PFAS adsorbents due to sustainable sourcing, large surface areas, and amenable surface properties. In this study, CNC was synthesized from the agro-food waste, apple pomace (APCNC), and coated with Moringa oleifera cationic protein (MOCP) aqueous extract to produce MOCP/APCNC for the removal of perfluorooctanoic acid (PFOA) from water. APCNC and MOCP/APCNC were manufactured, characterized, and utilized in PFOA batch adsorption kinetics and equilibrium trials. APCNC was successfully produced from apple pomace (AP) and determined through characterization and comparison to commercial CNC (CCNC). APCNC and MOCP/APCNC exhibited rapid PFOA adsorption, approaching equilibrium within 15 min. MOCP coatings inverted the MOCP/CNC surface charge to cationic (−15.07 to 7.38 mV) and enhanced the PFOA adsorption rate (2.65 × 10−3 to 5.05 × 10−3 g/mg/s), capacity (47.1 to 61.1 mg/g), and robustness across varied water qualities. The sustainable sourcing of APCNC combined with a green surface coating to produce MOCP/CNC provides a highly promising environmentally friendly approach to PFAS remediation.
Read full abstract