Abstract

Perfluorooctanoic acid (PFOA) in the ecosystem, resulting from industrial effluent and water bodies, has attracted greater concern. An economical treatment is in demand to optimize the current issue. In this research work, Perfluorooctanoic Acid was treated from drinking water sources with nano-ceramic clay. The ceramic clay was synthesized and characterized with Fourier infrared transformation, scanning electron micrograph, transmission electron micrograph, x-ray diffraction, and thermal analysis. An adsorption process was performed in batch and continuous modes for the effective conditions for maximum removal. In batch mode 82 ± 12 nm ceramic clay particle size; 3.0 initial pH; 210 rpm agitation 1.2 mg/L PFOA concentration; 100 mg/L clay dosage; 27 °C temperature, and 20hrs experimental time shows maximum 99.15% adsorption. The experimental data is well fitted with kinetics, isotherms, and thermodynamics calculated data. In fixed bed, continuous column study 10 h treatment time, 10 cm of bed height, and 2 ml/min were adsorbed 99.99% of PFOA. The experimental data from the fixed bed adsorption equipment was correlated using a number of different mathematical models, including the Thomas, Adams-Bohart, Yoon-Nelson, and Clark models. Overall nano ceramic clay was found to potential adsorbent for Perfluorooctanoic acid removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call