Environment-benign indium phosphide (InP) quantum dots (QDs) show great promise as visible emitters for next-generation display applications, where bright and narrow emissivity of QDs should be required toward high-efficiency, high-color reproducibility. The photoluminescence (PL) performance of InP QDs has been consistently, markedly improved, particularly owing to the exquisite synthetic control over core size homogeneity and core/shell heterostructural variation. To date, synthesis of most high-quality InP QDs has been implemented by using zinc (Zn) carboxylate as a shell precursor that unavoidably entails the formation of surface oxide on InP core. Herein, we demonstrate synthesis of superbly bright, color-pure green InP/ZnSe/ZnS QDs by exploring an innovative hybrid Zn shelling approach, where Zn halide (ZnX2, X = Cl, Br, I) and Zn oleate are co-used as shell precursors. In the hybrid Zn shelling process, the type of ZnX2 is found to affect the growth outcomes of ZnSe inner shell and consequent optical properties of the resulting heterostructured InP QDs. Enabled by not only the near-complete removal of the oxide layer on InP core surface through the hybrid Zn shelling process but the controlled growth rate of ZnSe inner shell, green InP/ZnSe/ZnS QDs achieve a record quantum yield (QY) up to unity along with a highly sharp linewidth of 32 nm upon growth of an optimal ZnSe shell thickness. This work affords an effective means to synthesize high-quality heterostructured InP QDs with superb emissive properties.
Read full abstract