This study investigates localized siltation in the Cigu Lagoon, Southwestern Taiwan, using an integrated approach of hydrodynamic modeling and remote sensing. In regions where in situ data is scarce, remote sensing provides critical complementary data inputs for our sediment model. We employed a multilayered mud sediment model, incorporating initial suspended sediment concentration (SSC) data derived from Landsat imagery, to identify the morphological changes taking place in the lagoon. Over the past few decades, sandbar migration and sedimentation have led to a significant shrinkage of the Cigu Lagoon, which is now at risk of disappearing if a full understanding of the underlying factors is not reached. The loss of the lagoon would have severe implications for the local ecosystem and habitat, as well as for the fishermen who rely on the lagoon for their livelihoods. Our results showed that sedimentation in the Cigu Lagoon is a compounded consequence of the action of the tidal cycle and of waves. Throughout the simulation period, the SSC in the Cigu Lagoon ranged from 1 g m −3 to 50 g m −3. The annual siltation rate of the lagoon due to cohesive sediment transport was 0.82 cm. The simulation results showed that the siltation mainly occurred during the winter, with the dominant factor being the frequent strong waves at this time of year. This study suggests that a management plan for the Cigu Lagoon must be devised and implemented, and that remote sensing and hydrodynamic modeling are valuable tools in communicating about the complex processes involved in a sedimentary system and informing relevant decision-making at the stage of management.
Read full abstract